Construction of Gauss-Christoffel quadrature formulas
نویسندگان
چکیده
منابع مشابه
A Survey of Gauss-Christoffel Quadrature Formulae
4. 4.1. 4.1.1. 4.1.2. 4.1.3. 4.2. 4.3. Gaussian quadrature with preassigned nodes Christoffel's work and related developments Kronrod's extension of quadrature rules Gaussian quadrature with multiple nodes The quadrature formula of Turan Arbitrary multiplicities and preassigned nodes Power-orthogonal polynomials Constructive aspects and applications Further miscellaneous extensions Product-type...
متن کاملOn sensitivity of Gauss-Christoffel quadrature
In numerical computations the question how much does a function change under perturbations of its arguments is of central importance. In this work, we investigate sensitivity of Gauss-Christoffel quadrature with respect to small perturbations of the distribution function. In numerical quadrature, a definite integral is approximated by a finite sum of functional values evaluated at given quadrat...
متن کاملConstruction of Gauss-Christ of fei Quadrature Formulas
Each of these rules will be called a Gauss-Christoffel quadrature formula if it has maximum degree of exactness, i.e. if (1.1) is an exact equality whenever / is a polynomial of degree 2n — 1. It is a well-known fact, due to Christoffel [3], that such quadrature formulas exist uniquely, provided the weight function w(x) is nonnegative, integrable with /* w(x)dx > 0, and such that all its moments
متن کاملOn computing rational Gauss-Chebyshev quadrature formulas
We provide an algorithm to compute the nodes and weights for Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary real poles outside [−1, 1]. Contrary to existing rational quadrature formulas, the computational effort is very low, even for extremely high degrees, and under certain conditions on the poles it can be shown that the complexity is of...
متن کاملNumerical Construction of Gaussian Quadrature Formulas for
Most nonclassical Gaussian quadrature rules are difficult to construct because of the loss of significant digits during the generation of the associated orthogonal polynomials. But, in some particular cases, it is possible to develop stable algorithms. This is true for at least two well-known integrals, namely ¡l-(Loêx)-x°f(x)dx and ¡Ô Em(x)f(x)-dx. A new approach is presented, which makes use ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1968
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1968-0228171-0